
CONCEPT FOR A REAL-TIME STRUCTURED DATABASE
QUERY LANGUAGE (RT-SQL)

PAUL J. FORTIER" and JANET PRICHARDt

"Naval Undersea Warfare Center, Newport, Rhode Island, 02841-1708, USA
t The University of Rhode Island, Computer Science Department, Kingston, R.I. 02881, USA

Abstract.

Real-time database management systems have become a hot topic in the research and de­
velopment community of late (Fort94a,Grah93,WCPP93). In addition there has been a
movement in the standards community to examine and develop extensions to existing and
proposed query languages to support real-time (Fish94,Fort94,Fort94a,FS94,Gord94).

This paper examines the state of research into real-time database management systems in
the areas of database structuring, transaction structuring, transaction processing, concur­
rency control, recovery and real-time transaction scheduling. We then extend the findings
and trends of this work into the high level specification of data definition language, data
manipulation language and data control language extensions for the standard SQL2 and
emerging SQL3 database query languages.

Keywords. Real-time, Database, Query language, SQL2, SQL3

1. INTRODUCTION

A real-time computing system differs from non-real­
time systems in fundamental ways. A real-time sy­
stem is required to interact with a physical system
through extraction of sensor induced information,
computation of some control, status or feedback in­
formation and to effect predictable reactive responses
on the physical system within specified time frames
using computed data. Real-time computing systems
are being applied to a wide range of physical systems,
such as automotive control, aircraft control, power
management, automated factories, medical assistance
and defense oriented systems. A database within a
real-time computing system has the same require­
ments levied on it. A real-time database management
system must continue to provide consistency and cor­
rectness of data manipulations, but must additionally
be predictable, meet application computational cor­
rectness conditions and be timely with responses to
application queries.

Traditional database management solutions are in­
compatible with this set of operational requirements.
We cannot expect predictable, correct nor timely da­
tabase query response if serializability, blocking, ab­
orts and backward recovery are applied to transac­
tion executions over a monolithic database. Therefore
real-time database management requires an altered
model of database structuring, transaction structu-

167

ring, transaction execution, transaction recovery and
consistency and correctness criteria that utilizes real­
time applications operational requirements (embed­
ded semantic information) to redefine these terms.
Database management policies and mechanisms must
be driven by the needs of the applications not by the
needs of the database management system.

For real-time to become part of a database mana­
gement systems requires altering the specification of
standard database query languages to include real­
time database management features for timeliness,
correctness, consistency, predictability and recovery.

The focus of the remainder of this paper is to define
the requirements of real-time database management
and to outline how these requirements can be inclu­
ded in an altered SQL specification. The discussion
will be high level and assumes a familiarity with the
SQL2 (DD92) and the evolving SQL3 (MS92) stan­
dards.

2. REAL-TIME DATABASE MANAGEMENT

In this section we review pertinent research and de­
velopments in real-time database management and
standardization efforts. We focus our discussion on
areas that potentially have the greatest impact on
database query language structure.

2.1 Real-time Scheduling

An important aspect of real-time computing is real­
time scheduling. A real-time scheduler orders a set of
ready to execute tasks and selects one for immediate
service. A real-time scheduler is composed of a sche­
duling policy, describing what parameters to optimize
selection on, how to handle overload and contention
situations, and a mechanism implementing the poli­
cies selected. Research into real-time schedulers have
taken two paths:

1. Static schedule generation

2. Dynamic schedule generation

In static scheduling the set of tasks is known apriori,
and an optimal schedule for the set of tasks can be
determined based on the policies being applied. The
static schedule cannot handle ad hoc conditions nor
error conditions that may arise. Therefore this type
of scheduling policy is not being considered for this
paper.

We focus instead on dynamic schedulers which al­
low for preemption and alterations of existing sche­
dules based on dynamically changing system loa­
dings and requirements. Numerous researchers
(FA94,HS93,SS93) have examined a variety of pa­
rameters and techniques for dynamic real-time task
scheduling policies and mechanisms.

Database research using real-time scheduling looks at
the issues involved in and solutions for integrating
real-time task schedulers with transaction manage­
ment
(concurrency control) (AG88,Fort94a,Naka93,Son88)
There are two elements to real-time transaction sche­
duling. The first deals with how to determine which
transaction, from a set of waiting transactions to be­
gin execution. The second element is to determine
what transaction operation to execute next (concur­
rency control operations ordering) based on real-time,
predictable and fault tolerant policies in place. Re­
search indicates the need to alter the conventional
model used for transaction and concurrency control
scheduling to support the unique need of real-time
database applications. We focus in this paper on po­
licies to select transactions and transaction operations
for execution based on real-time applications needs.

i,From the RT-SQL perspective, these studies indi­
cate the need for language extensions to schedule
transactions and transaction operations based on the
notion of time, data dependencies, various database
constraints and transaction structuring and proces­
sing constraints within the database.

2.2 Database Structuring

Real-time researchers have examined the need for fi­
ner grained partitioning of the database and redu­
ced coupling of database partitions to provide in­
creased availability of data with less blocking of data

168

(Fort93,HerI90,KLS90,WCPP93) The main emphasis
in these studies is the increased performance benefit
realized by transaction concurrency and data availa­
bility through a finer grained and loosely coupled da­
tabase structures.

A real-time SQL will be required to support the de­
finition and use of finer grained loosely coupled da­
tabase structures. This implies an alteration to the
data definition language and data manipulation lan­
guage to support decomposition within the specifica­
tion and runtime management of the database and its
data items.

2.3 Transaction Structuring

Transactions represent database units of work
viewed by users as possessing the ACID properties
(BHG87,OV91). The ACID properties include: Ato­
mic, Consistent, Isolation and Durability of transac­
tion execution. Current research for real-time focuses
on altering these properties for the support of applica­
tions real-time and predictable needs. Major research
areas include: transaction decomposition, transaction
consistency redefinition and alteration of transaction
correctness criteria using applications semantic data­
base access needs (Fort93,KLS90,WCPP93) .

Current research points out the need to alter the
transaction specification model in SQL to provide for
nested or partitioned transactions, inclusion of tran­
saction related consistency constraints predicates and
definitions for transaction correct execution that may
not include strict serializability nor fully consistent
database states. For predictable execution the SQL
specification requires the ability to specify execution
time, memory placement, secondary storage access
and other resource limitation requirements within its
boundaries for use by real-time off-line optimization
packages.

2.4 Concurrency Control

Concurrency control within databases is used to en­
sure database consistency and correctness while al­
lowing a set of transactions to execute concurrently.
Concurrency control performs the task of determining
how to interleave a set of database operations from
multiple transactions based on conflict resolution po­
licies and transaction correctness criteria for the set of
database operations (BHG87,Fort93). Conventional
concurrency control dealt only with transaction syn­
tactic information and the guarantee of correctness
and consistency by serializability of concurrently exe­
cuting transactions. The problem with conventional
concurrency control lies in their blind application of
serializability to all transactions regardless of a tran­
saction's semantic intentions.

Research has pointed out the flaw in this theory for
real-time systems. Real-time database management
requires concurrency control protocols that allow for

increased concurrency and early commit of partitio­
ned transactions based on the real-time and predic­
table requirements of the applications running within
the real-time system.

This requirement will cause the need to alter how an
execution model for transaction processing is selected
and constructed. The impact on SQL will be in the
specification of what concurrency control protocol to
employ for a database or partition thereof, to spe­
cify conditions upon which a transactions subparts
can be specified, conditions for transaction predicta­
ble executions, what scheduling policy to apply and
conditions when early commit can be allowed.

2.5 Transaction Recovery

On a system failure primary memory is lost and tran­
sactions are left in one of two states: committed be­
fore the failure, and active but not committed before
the failure . Recovery must ensure committed tran­
sactions remain committed, database consistency and
correctness are not violated upon a failure and re­
started active transactions do not cause loss of da­
tabase consistency. Failed transactions should not
cause other transactions to read inconsistent data or
cause other transactions to fail.

Conventional means for recovery of committed and
active transactions use check pointing of data items,
with redo for committed and undo for active tran­
sactions. Redo re executes the database actions of
a committed transaction to make its changes perma­
nent. Undo rolls back any changes to the database
to restore a state that existed before the transaction
executed. This model of recovery is not adequate
for real-time database management systems where
availability and timeliness of data may be more im­
portant than strict serializability. Correctness crite­
ria for transactions execution and recovery must be
altered to support the unique needs of real-time da­
tabases (Fort93,KLS90,SYKI92). It may be more de­
sirable in the real-time database environment to do
nothing, do an application provided recovery, or re­
cover to a future correct state (LL88) using forward
recovery techniques.

The state that existed at the time of transaction exe­
cution may not be the correct database state now,
based on real-world alterations of the database. Da­
tabase recovery should only affect the failed or erro­
neous portion of the database and transaction not the
entire database and entire transaction load.

Transaction recovery policies and mechanisms for
real-time need to be added to the specification of
SQL's data (data temporal consistency constraints
and enforcement rules) definition language and to
the specification of SQL's data manipulation lan­
guage for transaction (transaction temporal consist­
ency constraint and enforcement rules) specification.
The ability of transaction writers to specify exception
conditions for software, transaction aborts, conflict

169

resolution, and hardware faults must be added to the
language also.

2.6 Database Standardization

Standardization efforts for database management sy­
stems is relatively new. The first major database
management systems standards to emerge were the
database language NDL for network model database
applications and the database language SQL for re­
lational model database applications in 1986. These
initial standards provide a data definition language
(DDL) and a data manipulation language (DML) for
creating, populating and accessing data stored within
the structured network or relational database. Since
these initial standards, efforts have been underway to
refine these standards (SQL2) and to fit these stan­
dards into new environments (SQL3) (GaII91,GaII92).

Beyond these active standard improvement programs,
there are numerous sanctioned standards study ef­
forts. These study programs have as their char­
ters to define where these and other standards need
to change to support emerging database manage­
ment systems needs. Two related real-time da­
tabase standards study activities, the ANSI data­
base systems study group (DBSSG) predictable real­
time interface systems task group (PRISTG) and
the U.S. Navy's next generation computer resour­
ces (NGCR) database management interface stan­
dards working group (DISWG) fall into this category
(PS94,Fort94b). These standards bodies are develo­
ping recommendations for real-time and next genera­
tion database management systems standards.

3 EXTENTIONS FOR REAL-TIME SQL

We focus this section of the paper on our ideas for al­
terations to the SQL2 and SQL3 database definition,
control and manipulation languages to support real­
time and predictability. The discussion will be broken
up into changes to the data definition language, the
data manipulation language and the data controllan­
guage portions of the SQL specifications.

3.1 Data Definition Language Needs

Real-time systems have been constructed for a va­
riety of applications areas and programming langua­
ges. Applications such as weather forecasting, medi­
cal monitoring, defense systems use a variety of non
standard data types specific to their applications do­
main. to support these specialized data types and ab­
stract data types supported by modern programming
languages, the SQL data types must be extended.

To provide for non-traditional data types (BLOBS)
partitioned database specification, data consistency,
referential consistency, temporal consistency, fault to­
lerance, data distribution, heterogeneous databases
and real-time service SQL's data definition language

and resulting data structures and controlling proce­
dures need additional features and definitional flexi­
bility. In the following subsections these constructs
are examined separately.

3.l.l ADT and BLOBs

An extension to SQL needed by most modern real­
time programming languages and applications devel­
opers are abstract data types (ADT) and binary large
objects (BLOBs) . These data types are stored in the
database, but interpreted by applications. The da­
tabase does not keep copious amounts of meta data
on these data types. as is the case with conventional
SQL relations.

To facilitate BLOBs and ADTs, SQL's CREATE will
need to be expanded. Abstract data types may spe­
cify attributes and methods (operations) in the mem­
ber list. An abbreviated version of the syntax follows:

CREATE TYPE <ADT name> [<member list>]
or
CREATE BLOB <BLB name> [<method list>]

These declarations can then be used by the standard
SQL operators to create tables of ADTs or BLOBs,
to select an ADT or BLOB from a table of items, to
update or delete an ADT or BLOB, to insert a new
ADT or BLOB in the table, or to perform defined
applications operations on an ADT or BLOB. SQL3
requires less alteration due to its support for ADT
within an object's specification (Gall92) .

3.1.2 Data Constraint Definitions

Additional data definition constructs are required to
provide for constraint definitions on data items for:

• temporal constraints

• spatial constraints

• data dependency constraints

• storage constraints

• access constraints

These constraints are used to define the boundaries
upon which data stored within the database can be
considered consistent. The conventional range, boun­
dary and type constraints are extended for time,
space, storage and dependencies as itemized above.
Temporal constraints are used to specify within what
range of time a data item is considered correct and
consistent . For example, during the definition of a
data item, we could specify a constraint to indicate
that the data item must be updated every n seconds
beginning at some initial time until some future time
as:

[UPDATE EVERY <interval>
[AFTER <time exp>] UNTIL <time exp>]

170

if the condition is violated the data item is considered
temporally inconsistent. Conditionals such as BE­
FORE, AFTER, UNTIL, WHEN, BY, and EVERY
are needed to provide flexibility in defining timing
constraints on data definitions and use. Also, SQL2
does not allow constraints to include references to any
of the functions which return dates and times (0092) .
This restriction must be relaxed.

Likewise, during the specification of a table, we could
define a spatial constraint:

[SIZE UPPER LIMIT <integer>]

indicating that this is the maximum number of data
items that can be in this table. This would allow a
real-time programmer, for example, to determine an
upper bound on accessing the entire table.

Data dependency constraints can be specified through
the use of the CREATE TRIGGER statement propo­
sed for SQL3 (MS92). Here is an abbreviated form of
the statement:

CREATE TRIGGER <trigger name>
(AFTER I BEFORE)
(UPDATE [OF <data item>] I INSERT I DELETE)
ON <table> <action>

Hence, the trigger can be used to specify an action
to be taken before or after a given event (such as
an update of a data item). The action may update
information in other tables, or could be used to signal
an exception.

Storage constraints are used to allow programmers
the ability to specify where and how a data item or
table is to be stored. This feature is essential in­
formation for real-time applications to bound search,
execution time and access time for the specified data
structure. The following clause could be part of a
table definition:

[STORE IN <storage type> [AT <location>]]

This clause could be used to specify that the table
be stored in main memory at a particular memory
location. Other possible constraints may deal with
specifying how to translate a data item from one form
to another or if this is allowed. Constraints on access
privileges can also be specified. We will look at these
in the data control language section of this paper.

3.2 Data Control Language Needs

To support added security and fault tolerance requi­
rements (Gord93) the data control language will need
additional features . Security extensions will require
the ability to specify how data items can be used. For
example we may wish to limit the access to a data
item to just the owner, or to some subset of applica­
tions. Declarations such as public, private, protected,
owner, group, and u.se right.s will be needed to spe-

cify how a data item is controlled. Further details of
security requirements and possible language extensi­
ons can be found in the NGCR DISWG requirements
document (Gord93) and its references. Further data
control language extensions may be needed to specify
forms of recovery to guarantee security considerati­
ons. A discussions of these concepts is beyond the
scope of this paper.

3.3 Data Manipulation Language Needs

The greatest volume of added features will be found in
the data manipulation language. Added services for
scheduling, recovery, concurrency control and cons­
traint enforcement will be required. In the following
paragraphs we will address some of the possible ex­
tensions to SQL.

3.3.1 Transaction Structural Specification

Transactions need to be defined and delineated so
that pre- optimizations can be performed. In addi­
tion due to the time constrained and concurrency re­
quirements of numerous real- time applications, tran­
sactions must take on different forms and characte­
ristics than the conventional monolithic forms provi­
ded. The transactions basic structure should mirror
the programming language structure it is hosted on.
For example if an object oriented programming envi­
ronment is used, then the transactions should be of
the form of actions on objects.

In addition, transaction definitions should be flexible
enough to allow for defining partitioned transaction
structures, nested transactions structures or possi­
bly projected transaction structures (BHG87,Fort93).
The description of a transaction should include a spe­
cification and a body. The specification can be used
to define the characteristics of the transaction, as well
as the structure of the subtransactions (subtransac­
tions are defined in the same manner as transactions).

A second place where characteristics of a transaction
can be specified is the SET TRANSACTION state­
ment. In SQL2, this statement can be used to spe­
cify characteristics of the next transaction. RT-SQL
needs to extend the SET TRANSACTION statement
to include transaction and subtransaction identifiers,
to allow specification of these characteristics at any
time. As in SQL2, transaction characteristics would
include acceu mode, diagnostics area size and isola­
tion level. Within a transaction specification, the de­
finition of the subtransaction structure may be done
using the following declarations:

[PARTITION <partitioning spec>]
[NEST <nesting spec>]
[PROJECT <project spec>]

These constructs could be used to specify portions of
a transaction that can be done concurrently or in par­
allel, to specify transaction correctness criteria based

171

on correct execution of partitions, to define recovery
for each partition separately, to define commit crite­
ria for each partition separately, to specify separate
concurrency control protocols for each partition, or
to specify rules for concurrent execution separately.
Some of these uses will be shown in later subsections.

Additional control structures as specified in the SQL-
3 (Gall92) evolving standard need to be added to the
RT-SQL specification. For example the ability to spe­
cify a sequence of SQL statements in a procedure or
block, to provide flow of control statements such as
looping, branching, case, and conditionals. Also, the
ability to specify exception handling facilities within
the database application's code.

There may be a need to specify the relative critica­
lity of a transaction or portion of a transaction. To
provide this RT- SQL requires the transaction speci­
fication to allow definition of the criticality of a tran­
saction as follows:

[CRITICALITY <criticality level>]

This clause could also be specified on in the SET
TRANSACTION statement as well as on an indivi­
dual SQL statement or on a block of statements.

3.3.2 Temporal Constraints

Time management is one of the most important featu­
res needed to realize real-time database management.
Transactions must have the capability to be scheduled
based on time synchronization, event synchronization
or constraint requirements.

Real-time transactions can be synchronous or asyn­
chronous. A synchronous transaction requires a start
time, period, and possibly end time and conditions.
a possible transaction synchronous temporal specifi­
cation is:

[SYNCHRONOUS
START <time exp>,
PERIOD <time interval exp>
[, DEADLINE <time exp>]
[, WHEN <conditions>]]

A possible transaction asynchronous temporal speci­
fication is:

[ASYNCHRONOUS
EVENT <event>,
START <time exp>,
DELAY <time interval exp>,
[, DEADLINE <time exp>]
[, WHEN <conditions>]]

These specifications allow for the specification of time
constraints on the execution of transactions.

The time constraints can take differing forms based
on the applications needs. Time can be absolute as

in wall clock time, it can be relative to some action
or absolute time, it can be an event and time can
have conditional qualifiers such as: BEFORE, AF­
TER, BY, WITHIN, to quantify the severity of the
timing requirement. These additional time qualifiers
allow for the specification of hard deadlines, firm, soft
or no deadlines on transaction execution.

3.3.3 Transaction Properties

Transactions in a real-time system must have the
capability to alter the conventional meaning of the
ACID properties. For example it may not be neces­
sary nor desirable to require all transactions or por­
tions thereof to be atomic, conilent or independent,
but it is desirable for them to be durable. In order
to support such loosening of conventional transaction
ACID properties we need language constructs for each
feature.

To guarantee that a transaction or a portion thereof
be atomic or not atomic, to allow the alteration of
guranteed atomic execution requires a construct such
as:

[INITIALLY [NOT] GUARANTEED
[NOT] CHANGEABLE]

The INITIALLY mode (similar to what can be found
in constraint deferrability mode) indicates if the ap­
plication can change the mode.

This specification can appear in a transaction specifi­
cation, or within a SET TRANSACTION statement.
Transactions (and subtransactions) should have iden­
tifiers which can be included within a SET TRAN­
SACTION statement to make this possible. Such a
feature would allow the applications designers to de­
termine the granularity of atomicity to be used, in­
stead of having it dictated by serializability.

To allow or block the preemption of a transaction
or subtransaction, or to allow the alteration of the
constraint at some future time requires a feature such
as:

[INITIALLY [NOT] PREEMPTABLE
[<conditions>] [NOT] CHANGEABLE]

which can appear in a transaction specification, or wi­
thin a SET TRANSACTION statement. This would
provide mechanisms to construct critical sections of
database code that cannot be interrupted. The con­
trol moves over to the applications designers not the
database designers.

To allow or block recovery of a transaction or sub­
transaction, or to allow the altering of recovery based
on some user specified conditions requires a feature
such as:

[INITIALLY [NOT] RECOVERABLE
[<conditions>] [NOT] CHANGEABLE]

172

which can appear in a transaction specification, or
within a SET TRANSACTION statement. This fea­
ture would allow the partial or total recovery of a
transaction based on the specification of the appli­
cations needs, not on the needs of the database or
database manager.

To allow concurrent execution of a transaction's state­
ments and subtransactions requires a feature such as:

[<conditions>] BEGIN PARALLEL
[<statement list>] END PARALLEL

[<conditions>] BEGIN CONCURRENT
[<statement list>] END CONCURRENT

This is based upon the compound statement proposed
for SQL3 (Gall92), and as such should also include a
block label , local variable declaration list, and excep­
tion handler. The statement list may include SQL
statements and subtransactions. These features al­
low for the specification of concurrent and parallel
operation of transaction partitions. Such a feature
is essential for real-time applications such as robo­
tics and C 3 systems where tight data and temporal
synchronization is required.

3.3.4 Active Triggers

Another important requirement within a real-time
database management systems are triggers. A trig­
ger is a means for the database to provide additional
information to applications to effect synchronization
and correct operations. Data in the database can
be set up such that a transaction or action can be
started based upon a given condition. The triggering
condition can be specified on the data or within tran­
sactions themselves. To provide this feature RT-SQL
needs the addition of a trigger operator. The trigger
operator allows for the specification of a trigger and
the conditions upon which the trigger becomes active.
Recall the trigger notation presented earlier:

CREATE TRIGGER <trigger name>
(AFTER I BEFORE)
<event> ON <table> <action>

where event was either UPDATE, INSERT, or
DELETE on the named table. The format of the
<action> clause includes:

[WHEN ' (' <search condition> ')' 1
'(' <statement list> ')'

The notion of an event should be expanded to include
any known event or exception. For example, the start
of particular transaction could be signaled, so that
that event could be detected by the trigger statement.
Hence, the trigger notation should be generalized as
follows:

CREATE TRIGGER <trigger name>
(AFTER I BEFORE)

<event> <action>

where <event> can be any known event, including
updates, deletes, and inserts on tables. The format
of the <action> clause includes:

[WHEN <condition list>] '(' <statement list> ')'

The condition list is the set of conditions upon which
this trigger tests for activation and the statement list
may include operations, transactions, and signaling
exceptions.

3.3.5 Transaction Recovery

As in conventional databases real-time database tran­
sactions must have features for recovery. Unlike con­
ventional databases real-time database recovery needs
to be directed by the applications needs not the da­
tabase systems. Recovery features should provide
means to recover from timing, transaction, software
or hardware faults based on an applications semantic
requirements.

Recovery can be automatic, semiautomatic or ma­
nual. The applications writer should have the ability
to select only the recovery needed by his (her) tran­
saction. A SET TRANSACTION statement could
include the following recovery specification:

[RECOVER ON <condition>
[AUTO [<atomic>] I
[SEMI [<recover-body>] I
[MANUAL]]

Such a feature provides the applications writer the
ability to only recover what is necessary. For example
in a real- time tracking system if a track input is
missed the application would not wish to go back to
a previous state. Instead no recovery is performed,
the applications simply delays and waits for the next
valid track input.

In such a way the application only needs to pay for
the degree of recovery needed, not for the ACID pro­
perties full spectrum.

3.4 DBMS Precompilation Needs

A real-time database management system will require
some additional support tools in order to generate da­
tabase structuring and database manipulation code
which will operate consistently and correctly. Tools
for analysis of a set of generated transactions to de­
termine execution boundaries, to determine and set
the locations of data, and the constraints to be adhe­
red to for example must be developed. The scope and
contents of these elements of a database management
query language are beyond the scope of this paper at
this time.

173

4 CONCLUSIONS and FUTURE RESEARCH

Our reason for developing and presenting these con­
cepts is to stimulate the database and real-time rese­
arch and development communities to begin addres­
sing the ways in which we can introduce real-time
database technology into the main stream of data­
base product developments and database standards
evolution. To accomplish this the database commu­
nity must develop a standard set of language features
which augment conventional database management
systems languages in such a way that does not li­
mit the use of existing database management systems
code, yet allows for the specification of real-time and
fault tolerant features required by new applications.

To this end we have proposed a set of high level ex­
tensions to the SQL language which will meet some
of these needs of applications which use real-time
databases. Future work under DISWG and ANSI
PRISTG will further these efforts to develop a stan­
dard set of features for real-time and predictable da­
tabase management.

5. REFERENCES

AG88 Abbott R. and H. Garcia-Molina (1988) .
Scheduling Real-Time Transactions. Procee­
dings of ACM SIGMOD Conference, March,
1988

BHG87 Bernstein P. and V. Hadzilacas and N.
Goodman, (1987). Concurrency Control
and Recovery in Database Systems, Addison­
Wesley Publishing Co, Reading, Ma. 1987.

DD92 Date C. and H. Darwen, (1992). A Guide
to SQL Standard, Addison-Wesley Publishing
Co., Reading, MA. 1992.

Fish94 Fisher D., (1994), Current Database Stan­
dards and Available Technology, NGCR SPA­
WAR 331-2, 2451 Crystal Dr., Alexandria,
Va.22245. February, 1994.

Fort94 Fortier P., (1994). DISWG Database Ma­
nagement Systems Reference Model, NGCR
SPAWAR 331-2, 2451 Crystal Dr., Alexandria,
Va.22245. February, 1994.

Fort94a Fortier P, (1994) . Data Management Con­
cepts for Real-time C 3 Systems , To Appear
in: Proceedings of the Joint Navy IR and lED
Symposium, June, 1994.

Fort94b Fortier P., (1994) ANSI DBSSG PRISTG:
Real-Time Database Management Systems
Reference Model, ANSI DBSSG Predictable
Real-time Information Systems Task Group,
PRISTG Document No. 94-001, January,
1994.

Fort93 Fortier P.,(1993). D.Sc. Thesis: Early Com­
mit, University of Massachusetts Lowell, April,
1994.

FA94 Fortier P. and M. Audette, (1994) . Simulation
Analysis of Real-Time Task Scheduling Mecha­
nisms, Proceedings of the HICSS Conference,
January, 1994.

FS94 Fortier P. and Cdr. G. Sawyer, (1994) DISWG
a New Player in NGCR Open Systems Stan­
darads, to appear in Computer Standards and
Interfaces, 1994.

Gall91 Gallagher L., (1991) . Database Management
Standards: Status and Applicability, Computer
Standards and Interfaces, 12, 1991.

Gall92 Gallagher L., (1992) . Object SQL: Language
Extentions for Object Data Management. Pro­
ceedings of the International Society for Mini
and Microcomputers CIKM-92, 1992.

Gord93 Gordon K., (1993) . Requirements for Mili­
tary Database Management Systems. NGCR
Technical Document No. 010 lJer. 1.0, 15
November, 1992 NGCR SPAWAR 331-2, 2451
Crystal Dr., Alexandria, Va.22245.

Grah93 Graham M., (1993). Real-time Data Mana­
gement . IEEE Technical Committee Real- Time
Systems Newsletter, 9{1/2) , Spring/Summer,
1993.

HS93 Hamidzadeh B. and S. Shekhar, (1993) . A
General Framework for Dynamic Scheduling
of Real-Time Tasks. IEEE Technical Com­
mittee Real- Time Systems Newsletter, 9{ 1/2),
Spring/Summer, 1993.

Herl90 Herlihy M (1990) . Apologizing Versus As­
king Permission: Optimistic Concurrency Con­
trol for Abstract Data Types. ACM Transac­
tions on Database Systems 15(1), March, 1990.

HW90 Herlihy M. and J . Wing (1990) . Lineariz­
ability: a correctness condition for concurrent
objects. A CM Transactions on Programming
Languages and Systems, 12(3), July, 1990.

KLS90 Korth H., E. Levy and A. Silberschatz
(1990). A formal approach to recovery by com­
pensating transactions. Proceedings of the 16th
Very Large Database Conference, 1990.

LL88 Lin K. and M. Lin (1988) . Enhancing availa­
bility in distributed real-time databases. ACM
SIGMOD Record, 17(1), March 1988.

MS92 Melton J. and A Simon (1992) . Understan­
ding the new SQL; A Complete Guide. Morgan
Kauffman Publishers, SanMateo, Ca., 1992.

Naka93 Nakazato H. (1993) . Issues in Synchroni­
zing and Scheduling Tasks in Real-time Data­
base Systems. PhD Thesis, University of Illi­
nois at Urbana-Champaingn, Urbana, 11., 1993.

OV91 Ozsu T. and P. Valduriez. Principles of Dis­
tributed Database Systems. Prentice Hall Inc.,
Englewood Cliffs, NJ, 1991.

Son88 Son S. (1988). Real-time Database systems:
Issues and approaches. ACM SIGMOD Record,
17(1), March, 1988.

SYKI92 Son S, S. Yannopoulos, Y. Kim, and C. Ian­
nacone (1992) . Integration of a database sy­
stem with a real-time kernel for time-critical
applications. Proceedings of the International
Conference on Systems Integration, June, 1992.

174

SS93 Spuri M. and J . Stankovic (1993). How to
integrate precedence constraints and shared re­
sources in real-time scheduling. IEEE Tech­
nical Committee Newsletter on Real-time Sy­
stems, 9{1/2), Spring/Summer, 1993.

WCPP93 WoIfe V., L. Cingiser, J. Peckham, and J.
Prichard (1993) . A model for real-time object
oriented databases. IEEE Technical Commit­
tee Newsletter on Real-time Systems, 9{1/2),
Spring/Summer, 1993

